
Computing project Part III

Assignment 6 − Symmetric Top

A couple of things have to change compared to the previous assignments where we used the Hamiltonian to determine
time−derivatives. Here we already have an explicit form for the equations of motion (i.e. an expression for the time−deriva-
tives) and we merely have to numerically integrate it with respect to time.
The equations of motion are given by:

In[1]:= Ω1
 @Ω2_, Ω3_D := HHI2 - I3L �I1 L Ω2 Ω3;

Ω2
 @Ω1_, Ω3_D := HHI3 - I1L �I2 L Ω1 Ω3;

Ω3
 @Ω1_, Ω2_D := HHI1 - I2L �I3 L Ω1 Ω2;

However, it turns out to be far more convenient to define the time−derivative as a function that operates on a vector
{ Ω1,Ω2,Ω3} and returns a vector:

In[4]:= Ωdot@Ω_D := 8HHI2 - I3L �I1 L Ω@@2DD Ω@@3DD,HHI3 - I1L �I2 L Ω@@1DD Ω@@3DD, HHI1 - I2L �I3 L Ω@@1DD Ω@@2DD<;
We still use i as a counter, with maximum value imax:

In[5]:= imax = 1000;

Time starts at t0 and timestep size is given by dt. Values are stored in an array T:

In[6]:= t0 = 0;
dt = 0.01;
T = Table@t0, 8i, 1, imax<D;

Moments of inertia I1, I2, I3 are fixed:

In[9]:= I1 = 2;
I2 = 2;
I3 = 4;

Define array to store energy in:

In[12]:= EE = Table@0, 8i, 1, imax<D;
� 1

Set initial conditions for Ω and define array to store its values in:

In[13]:= Ω0 = 80, 0, 3<;
Ω = Table@Ω0, 8i, 1, imax<D;

Now to do the actual calculation, according to the predictor−corrector method. Note how simple this looks with Ω and Ωdot
defined as/on vectors.

In[15]:= Do@ T@@iDD = T@@i - 1DD + dt;
Ωpred = Ω@@i - 1DD + Ωdot@ Ω@@i - 1DD D dt;
Ω@@iDD = Ω@@i - 1DD + HΩdot@ Ω@@i - 1DD D + Ωdot@ Ωpred DL dt�2;
, 8i, 2, imax<D

Calculate the energy:

In[16]:= EE = I1 Transpose@ΩD@@1DD^2 + I2 Transpose@ΩD@@2DD^2 + I3 Transpose@ΩD@@3DD^2;
Plot Ω1, Ω2 and Ω3 as function of time. Plot energy as function of time.

In[17]:= ListPlot@Transpose@8T, Transpose@ΩD@@1DD<D, Frame ® True, AxesLabel ® 8"t", "Ω1"<D;
ListPlot@Transpose@8T, Transpose@ΩD@@2DD<D, Frame ® True, AxesLabel ® 8"t", "Ω1"<D;
ListPlot@Transpose@8T, Transpose@ΩD@@3DD<D, Frame ® True, AxesLabel ® 8"t", "Ω1"<D;

0 2 4 6 8 10
-1

-0.5

0

0.5

1

t

0 2 4 6 8 10
-1

-0.5

0

0.5

1

t

0 2 4 6 8 10
0

1

2

3

4

5

6

In[18]:= ListPlot@Transpose@8T, EE<D, Frame ® True, AxesLabel ® 8"T", "Energy"<D;

0 2 4 6 8 10
0

10

20

30

40

50

60

70

Mmmh, it seems as if nothing happens. But wait, that is exactly what we would expect for these initial conditions. The
vector Ω precesses around the z axis with zero amplitude, i.e., it stays constant.

� 2

Now for some different initial conditions, where we would expect small oscillations around the z axis.

In[19]:= Ω0 = 80, 1, 3<;
Ω = Table@Ω0, 8i, 1, imax<D;

Calculate Ω, energy and plot Ω1, Ω2, Ω3 and energy.

In[21]:= Do@ T@@iDD = T@@i - 1DD + dt;
Ωpred = Ω@@i - 1DD + Ωdot@ Ω@@i - 1DD D dt;
Ω@@iDD = Ω@@i - 1DD + HΩdot@ Ω@@i - 1DD D + Ωdot@ Ωpred DL dt�2;
, 8i, 2, imax<D

In[22]:= EE = I1 Transpose@ΩD@@1DD^2 + I2 Transpose@ΩD@@2DD^2 + I3 Transpose@ΩD@@3DD^2;
In[23]:= ListPlot@Transpose@8T, Transpose@ΩD@@1DD<D, Frame ® True, AxesLabel ® 8"T", "Ω1"<D;

ListPlot@Transpose@8T, Transpose@ΩD@@2DD<D, Frame ® True, AxesLabel ® 8"T", "Ω1"<D;
ListPlot@Transpose@8T, Transpose@ΩD@@3DD<D, Frame ® True, AxesLabel ® 8"T", "Ω1"<D;

0 2 4 6 8 10
-1

-0.5

0

0.5

1

T

0 2 4 6 8 10
-1

-0.5

0

0.5

1

T

0 2 4 6 8 10
0

1

2

3

4

5

6

In[24]:= ListPlot@Transpose@8T, EE<D, Frame ® True, AxesLabel ® 8"T", "Energy"<D;

0 2 4 6 8 10
38

38.0001

38.0002

38.0003

38.0004

Yes, indeed oscillations around the z axis; the energy stays constant up to some very small error due to our numerical
approximation.

